Abstract

Ultrasonic attenuation was measured for the first time at megahertz range (30MHz) for a TiNi single crystal, which undergoes B2-B19' (cubic-monoclinic) martensitic transformation. A sharp attenuation peak was found at transformation temperature region (two-phase region), which was associated with the structural transformation and drastic domain wall evolution in the two-phase region. Besides, a very broad peak below the transformation temperature (i.e., in martensite state) was also found, which can be ascribed to twin boundary motion at megahertz range. This broad peak has a high internal friction level of 0.0027. Considering that this alloy also has a high damping capacity at low frequency, we can deduce that TiNi martensite is an excellent high damping material in an extremely wide frequency range and wide temperature range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.