Abstract

Mycobacterium tuberculosis H37Rv contains the kshA (Rv3526) and kshB (Rv3571) genes, encoding 3-ketosteroid 9alpha-hydroxylase (KSH). Consistent with their predicted roles, the DeltakshA and DeltakshB deletion mutants of M. tuberculosis H37Rv were unable to use cholesterol and 4-androstene-3,17-dione as primary carbon and energy sources. Interestingly, DeltakshA and DeltakshB mutants were also unable to metabolize the steroid substrate 5alpha-androstane-3,17-dione, whereas wild-type M. tuberculosis H37Rv could. The deletion of either of these genes lead to rapid death of the microorganism in murine infection models and in macrophages, showing that kshA and kshB are essential factors for M. tuberculosis pathogenesis. Penta-acylated trehalose (PAT) biosynthesis was altered in the DeltakshB mutant, but not the DeltakshA mutant. The DeltakshB mutant synthesizes all other types of lipids. The DeltakshB mutant had a thickened outer layer in its cell wall. KshB thus appears to be involved in multiple processes, probably as a reductase of different oxygenases. We conclude that an impaired 3-ketosteroid 9alpha-hydroxylase activity is the cause of the highly attenuated phenotype of our M. tuberculosis H37Rv mutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.