Abstract

To explore the potential of multiangle remote sensing for estimating biophysical or ecological parameters over a variety of landscapes, a modeling tool that is capable of handling three-dimensional (3-D) heterogeneous structures, deriving ecological parameters from the vegetation structure, and effectively working on different scene scales is very desirable. A 3-D scene modeling approach for these purposes is presented in this paper. This 3-D model fulfills its goal by taking advantage of radiosity theory and computer graphics techniques. It consists of two major modules: a modified extended L-systems (MELS) method to generate a 3-D realistic scene and a radiosity-graphics combined method (RGM) to calculate the radiation regime based on the 3-D structures rendered with MELS. The 3-D simulation tool is then evaluated using field measurements of both plant structure and spectra collected during the NASA Earth Observing Satellite Prototype Validation Exercise Jornada field campaign near Las Cruces, NM. The modeled scene reflectance is compared with measurements from three platforms (ground, tower, and satellite) at various scales (from the size of individual shrub component to satellite pixels of kilometers). The agreement with measured reflectances is excellent at all sampling scales tested. As an example of the model's application, we use the model output to examine the validity of a linear mixture scheme over the Jornada semidesert scene. The result shows that the larger the sampling size (at least larger than the size of the shrub component), the better the hypothesis is satisfied because of the unique structure of the Jornada scene: dense plant clumps (shrub component) sparsely scattered on a predominantly bare soil background. A range of possible applications of this 3-D scene model is highlighted, and further work needed for 3-D modeling is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.