Abstract

To present an efficient and robust method for 3-D reconstruction of the coronary artery tree from multiple ECG-gated views of an X-ray angiography. 2-D coronary artery centerlines are extracted automatically from X-ray projection images using an enhanced multi-scale analysis. For the difficult data with low vessel contrast, a semi-automatic tool based on fast marching method is implemented to allow manual correction of automatically-extracted 2-D centerlines. First, we formulate the 3-D symbolic reconstruction of coronary arteries from multiple views as an energy minimization problem incorporating a soft epipolar line constraint and a smoothness term evaluated in 3-D. The proposed formulation results in the robustness of the reconstruction to the imperfectness in 2-D centerline extraction, as well as the reconstructed coronary artery tree being inherently smooth in 3-D. We further propose to solve the energy minimization problem using α-expansion moves of Graph Cuts, a powerful optimization technique that yields a local minimum in a strong sense at a relatively low computational complexity. We show experimental results on a synthetic coronary phantom, a porcine data set and 11 patient data sets. For the coronary phantom, results obtained using different number of views are presented. 3-D reconstruction error evaluated by the mean plus one standard deviation is below one millimeter when 4 or more views are used. For real data, reconstruction using 4 to 5 views and 256 depth labels averaged around 12 s on a computer with 2.13 GHz Intel Pentium M and achieves a mean 2-D back-projection error of 1.18 mm (ranging from 0.84 to 1.71 mm) in 12 cases. The accuracy for multi-view reconstruction of the coronary artery tree as reported from the phantom and patient studies is promising, and the efficiency is significantly improved compared to other approaches reported in the literature, which range from a few to tens of minutes. Visually good and smooth reconstruction is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.