Journal of Anatomy | VOL. 231
Read
3-D range of motion envelopes reveal interacting degrees of freedom in avian hind limb joints
Abstract
Measuring range of motion (ROM) is a valuable technique that can link bone morphology to joint function in both extant and extinct taxa. ROM results are commonly presented as tables or graphs of maxima and minima for each rotational degree of freedom. We investigate the interactions among three degrees of freedom using X-ray reconstruction of moving morphology (XROMM) to measure ROM of the main hind limb joints of Helmeted Guineafowl (Numida meleagris). By plotting each rotation on an axis, we generate three-dimensional ROM volumes or envelopes composed of hundreds of extreme joint positions for the hip, knee, and intertarsal joints. We find that the shapes of ROM volumes can be quite complex, and that the contribution of long-axis rotation is often substantial. Plotting invivo poses from individual birds executing different behaviors shows varying use of potential rotational combinations within their ROM envelopes. XROMM can provide unprecedented high-resolution data on the spatial relationship of skeletal elements and thereby illuminate/elucidate the complex ways in which soft and hard tissues interact to produce functional joints. In joints with three rotational degrees of freedom, two-dimensional representations of ROM (flexion/extension and abduction/adduction) are incomplete.
Concepts
X-ray Reconstruction Of Moving Morphology Range Of Motion Hind Limb Joints Numida Meleagris Rotational Degree Of Freedom Degrees Of Freedom Intertarsal Joints Range Of Motion Of Joints Contribution Of Rotation Extinct Taxa
Introducing Weekly Round-ups!Beta
Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.
Climate change Research Articles published between Jan 23, 2023 to Jan 29, 2023
Climate change adaptation has shifted from a single-dimension to an integrative approach that aligns with vulnerability and resilience concepts. Adapt...
Read MoreDisclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.