Abstract
Mice lacking multidrug resistance protein 1a (mdr1a) are protected from methylenedioxymethamphetamine (MDMA)-induced neurotoxicity, suggesting mdr1a might play an important role in this phenomenon. We characterized MDMA pharmacokinetics in murine plasma and brain to determine if mdr1a alters MDMA distribution. Wild-type (mdr1a⁺/⁺) and mdr1a knock-out (mdr1a⁻/⁻) mice received i.p. 10, 20 or 40 mg/kg MDMA. Plasma and brain specimens were collected 0.3-4 h after MDMA, and striatum were dissected. MDMA and metabolites were quantified in plasma and striatum by gas chromatography-mass spectrometry. MDMA maximum plasma concentrations (C(max)) for both strains were 916- 1363, 1833-3546, and 5979-7948 μg/L, whereas brain C(max) were 6673-14,869, 23,428-29,433, and 52,735-66,525 μg/kg after 10, 20, or 40 mg/kg MDMA, respectively. MDMA and metabolite striatum/plasma AUC ratios were similar in both strains, inconsistent with observed MDMA neuroprotective effects in mdr1a⁻/⁻ mice. Ratios of methylenedioxyamphetamine (MDA) and 4-hydroxy-3-methoxymethamphetamine (HMMA) AUCs exceeded 18% of MDMA's in plasma, suggesting substantial MDMA hepatic metabolism in mice. MDMA, MDA, HMMA, and 4-hydroxy-3-methoxyamphetamine maximum concentrations and AUCs exhibited nonlinear relationships during dose-escalation studies, consistent with impaired enzymatic demethylenation. Nonlinear increases in MDMA plasma and brain concentrations with increased MDMA dose may potentiate MDMA effects and toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.