arXiv: Astrophysics of Galaxies
Read

2MASS wide field extinction maps: IV. The Orion, Mon R2, Rosette, and Canis Major star forming regions

Publication Date Jul 26, 2011

Abstract

We present a near-infrared extinction map of a large region (approximately 2200 deg^2) covering the Orion, the Monoceros R2, the Rosette, and the Canis Major molecular clouds. We used robust and optimal methods to map the dust column density in the near-infrared (NICER and NICEST) towards ~19 million stars of the Two Micron All Sky Survey (2MASS) point source catalog. Over the relevant regions of the field, we reached a 1-sigma error of 0.03 mag in the K-band extinction with a resolution of 3 arcmin. We measured the cloud distances by comparing the observed density of foreground stars with the prediction of galactic models, thus obtaining d_{Orion A} = (371 +/- 10) pc, d_{Orion B} = (398 +/- 12) pc, $d_{Mon R2} = (905 +/- 37) pc, $d_{Rosette} = (1330 +/- 48) pc, and $d_{CMa} = (1150 +/- 64) pc, values that compare very well with independent estimates.

Concepts

Dust Column Density Monoceros Monoceros R2 Mon R2 Point Source Catalog Sky Survey 2MASS Canis Major Cloud Distances Canis

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Nov 14, 2022 to Nov 20, 2022

R DiscoveryNov 21, 2022
R DiscoveryArticles Included:  2

The world needs to move quickly towards sustainability that should characterize all production and consumption patterns. We use cookies to improve you...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.