Abstract

Two experiments were conducted in broiler chickens to compare the effect of different Se sources on Se tissue enrichment: sodium selenite (SS), seleno-yeast (SY), and a new organic Se source (SO) containing 2-hydroxy-4-methylselenobutanoic acid (HMSeBA) as an active substance. For each experiment, treatments differed only in source or dose of Se additive. Relative efficiency was compared by plasma and tissue [muscle (pectoralis major) and liver] total Se concentrations. The first experiment compared Se sources (SS, SY, and SO) at different concentrations (mg of Se/kg of feed; SS-0.3; SY-0.1 and -0.3; SO-0.1 and -0.3; and a negative control, 0) in broilers between 0 and 42 d of age. Plasma, liver, and muscle Se concentrations were improved by all Se sources at both d 21 and 42 compared with the negative control group. Between Se sources, minor differences were observed for plasma and liver results, whereas a significant dose effect was observed from 0.1 to 0.3 mg of Se/kg of feed (P < 0.05) for each source. Muscle Se concentrations were improved such as SO > SY > SS (P < 0.05). Moreover, the relative muscle Se enrichment comparison, using linear regression slope ratio, indicated an average of 1.48-fold (95% CI 1.38, 1.58) higher Se deposition in muscle for SO compared with SY. In the second experiment, excessive dietary doses of 5 mg of Se/kg of feed from SS and SO showed a lower deleterious effect of SO on BW and feed intake in comparison with standard Se doses (P < 0.05). Seleno amino acid measurements conducted on different tissues of animals fed SO at 0.5 mg/kg of feed showed that HMSeBA is fully converted into selenomethionine and selenocysteine. These results of both experiments demonstrate the higher relative bioavailability of SO compared with SS and SY as determined through tissue Se enrichment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.