Abstract

This paper reports fabrication of 2-DOF vibratory gyroscope using SU-8 based UV-LIGA process. The device structure is designed to be symmetrical in order to match the resonance frequencies of drive and sense mode oscillators and also to minimize their relative temperature dependent drift. The overall arrangement is such that the two vibration modes do not affect each other and therefore, mechanical decoupling is achieved which helps in minimizing bias drift. The design is optimized to be compatible with the UV-LIGA process having 10 μm thick electroformed nickel as structural layer. Photolithography to create 11 μm thick SU-8 molds for electroforming sacrificial copper and structural nickel layer is optimized using multiple exposure technique that ensures near vertical side walls. Since the highly cross-linked SU-8 remaining after development is difficult to remove reliably from high aspect ratio structures without damage or alteration to the electroformed metals, a 2.45 GHz MW plasma etching process is developed with CF4/O2 mixes. The fabricated device is checked for off-plane misalignment between the stationary and movable comb fingers using white light interferometry and it is found to be almost negligible. Also, the prototype device is characterized for amplitude and phase spectral responses using Polytec MSA-500 Micro System Analyzer. The drive and sense mode resonance frequencies are observed at 7.3 and 7.1 kHz respectively against the mode matched designed frequency of 7.5 kHz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.