Abstract
As an additive of gasoline, methyl tert-butyl ether (MTBE) has a higher solubility in water, which is about 20 times as high as that of benzene. This characteristic results in MTBE dissolving out of the gasoline into the soil and groundwater. Due to relative unique physicochemical behavior of MTBE it would be an ideal candidate for use in environmental forensic investigations. In order to study the transport and distribution of MTBE in saturated zone of ground water, a two-dimensional experimental cell was setup to simulate the real environment of the groundwater flow. The effects of soil and groundwater flow velocity on the MTBE transport were investigated. The results show that the mobile distance of MTBE in vertical direction was smaller than that in horizontal direction paralleling with the groundwater flow. Because the main dynamics of groundwater flow direction was convection and dispersion, the movement of MTBE is also diffusion in the vertical direction. In addition, the transport of MTBE was more quick in high permeability porous media, and the increase of groundwater flow velocity can accelerate the MTBE plume development, but the irregularity and randomness of the plume are enhanced synchronously. These research results can give some helps for the investigation of MTBE movement in the groundwater, also can make some references for other petroleum contamination behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.