Abstract
Bulk high temperature superconductors (HTS) can be magnetized and act as permanent magnet much stronger than conventional ones as NdFeB. The design of the inductor is a key point to perform the desired magnetization of the HTS bulk. In this paper, we focus on modeling a pulsed field magnetization (PFM) process of an HTS bulk using a coil powered with a magnetizer. The built model is a 2-D axisymmetric problem, based on the H formulation and coupled with electrical equations though the magnetic flux seen by the magnetizing coil. The calculation of this magnetic flux in the H formulation is not trivial and was validated using magnetic vector potential formulation on a coil in the air. Assuming different operating conditions, the bulk HTS is then modeled using four different properties corresponding to air, perfect diamagnetic, copper, and HTS. It was shown that simulating a PFM process could lead to different value of peak current and applied magnetic field to the bulk HTS, depending on the critical current density of the bulk, for example. These variations are in the range of the air and diamagnetic cases. Therefore, the proposed method should be used in order to predict a realistic trapped magnetic field in the HTS bulk by taking into account its reaction seen by the coil during the PFM process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.