Abstract

This paper presents a novel method for the localization of a passive radio frequency identification (RFID) tag in a 2-D space. First, we show that the position of the tag can be estimated as the intersection of two orthogonal lines, which are determined by the weighted integrals of the magnetic flux density created by the tag. To measure them, we developed a square magnetic sensor composed of six coils: four rectangular coils, a set of four bow-tie-shaped coils connected in series, and a square coil. Using this sensor with side lengths of 200 mm, an RFID tag was localized in a 180 mm square domain with an average error of 5.1 mm. Using the sensor with side lengths of 400 mm, the RFID tag was also localized in a 300 mm square domain with an average error of 1.8 mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.