Abstract

AbstractNonvolatile memory is an indispensable component of electronic devices. However, the current technology makes it difficult to satisfy the emerging big data demand. To circumvent the existing problems, herein, a first attempt is made to achieve multifunctional nonvolatile memory based on all 2D heterostructures, consisting of histidine‐doped molybdenum disulfide quantum disks mixed with graphene oxide and a graphene macroscopic heterojunction. The designed device possesses intriguing hybrid electrically and optically controllable nonvolatile memory functionalities. By harnessing the unique properties of these materials, memory devices demonstrate long‐term stability and nonvolatile characteristics under both optical and electrical control signals. These devices possess outstanding features, such as multiple read‐write cycles, multi levels, and fast switching speeds, overcoming the limitations of traditional components. To explore the underlying physical mechanism, the Fermi level of graphene is measured and it is confirmed that the charge transfer and trapping across the heterojunctions are the major factors responsible for the observed behavior. This study demonstrates that 2D heterostructures for hybrid optically and electrically controllable nonvolatile memory pave an alternative route for the next‐generation information technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.