Abstract

The Joint Actinide Shock Physics Experimental Research (JASPER) facility utilizes a two-stage light gas gun to conduct equation of state experiments. The gun has a launch tube bore diameter of 28 mm, and is capable of launching projectiles at a velocity of 7.5 km/s using compressed hydrogen as a propellant. A numerical study is conducted to determine the effects that launch tube exit geometry changes have on attitude of the projectile in flight. A comparison of two launch tube exit geometries is considered. The first case is standard muzzle geometry where the wall of the bore and the outer surface of the launch tube form a right angle. The second case includes a beveled transition from the wall of the bore to the outer surface of the launch tube. An h-adaptive, Petrov-Galerkin finite element method is employed to model the axisymmetric compressible flow equations. Numerical solutions indicate that pressure variations occur on the back face of the projectile from case to case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.