Abstract

The operation of a sandwich structured all-SiC power module is demonstrated at 250 °C. The power module was designed by considering two thermal deformation issues. Thermally induced bending of the SiN-AMC substrates is reduced by introducing symmetrical Cu wiring patterns on both sides of the SiN ceramic plate. The concentration of stress located in the gate joint material is drastically reduced by introducing a trench structure in the Cu wiring layer of the gate interconnection. A double pulse test at a high temperature is carried out. At 250 °C, the all-SiC sandwich-structured power module was successfully operate at 600 V and 15 A. The maximum switching transient speed (dV/dt) of turn-on and turn-off are observed 10.7 and 12.1 V/ns, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.