Abstract

Recent evidence suggests that oestrogen plays a physiological role in the testis. Both oestrogen receptor alpha and oestrogen receptor beta (ERb) are present in the testis and administration of oestrogen has been shown to inhibit the development of Sertoli, Leydig and germ cells. This study investigates the effect of ERb on the testis using ERb knockout mice (bERKO). Adult male bERKO mice (n=8) and their wild-type littermates (n=7) were killed at 11 weeks postpartum. One testis from each animal was fixed in Bouin’s fluid and embedded. Each testis was fractionated and thick sections cut and stained with PAS. The optical disector method was used to count the number of Leydig cells, Sertoli cells, spermatogonia, spermatocytes and spermatids in each testis. Trunk blood was collected and plasma testosterone concentrations measured by radioimmunoassay. No significant differences in body or testis weight were seen between the bERKO or wild-type mice. Similar numbers of Sertoli cells, spermatogonia, spermatocytes and spermatids were also observed between the two groups. The number of Leydig cells was significantly increased in bERKO mice compared with their wild-type littermates (P < 0.05). Despite the increased number of Leydig cells in the bERKO mice there was no significant difference in plasma testosterone concentrations in this group compared to the wild-type mice. Oestrogen has been reported to inhibit proliferation of adult-type Leydig cells and to inhibit steroidogenesis. This study suggests that the regulation of Leydig cell proliferation may be mediated by ERb. The presence of normal circulating testosterone concentrations in bERKO mice suggests that the effects of oestrogen on steroidogenesis are not brought about by ERbeta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.