Abstract

Nitric oxide-donating nonsteroidal anti-inflammatory drugs (NO-NSAIDs) consist of a conventional NSAID to which an NO-releasing moiety is attached covalently, often via a spacer molecule. NO-NSAIDs represent an emerging class of compounds with chemopreventive properties against a variety of cancers, demonstrated in preclinical models including cell culture systems and animal tumor models; their potential efficacy in humans has not been assessed. Their mechanism of action appears complex and involves the generation of reactive oxygen species, suppression of microsatellite instability in mismatch repair-deficient cells, and modulation of several signaling cascades that culminate in inhibited cell renewal and enhanced apoptosis. NO, long appreciated to be able to protect from and also promote cancer, is released form NO-NSAIDs and constitutes their defining property. Existing data are consistent with the notion that NO may mediate their anticancer effect. In addition there is evidence that long-term administration of NO-donating compounds is not associated with increased incidence of colon cancer. Whether NO release is required for the anticancer effect of NO-NSAIDs has being questioned by recent data indicating that, at least in the case of NO-aspirin, the NO-releasing moiety may serve as a leaving group while the spacer actually being the moiety responsible for its pharmacological action. Regardless of mechanistic issues, these compounds promise to contribute to the control of cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.