Abstract
To evaluate the role of 20-hydroxyeicosatetraenoic acid (20-HETE), a product of arachidonic acid omega-hydroxylation via cytochrome P450 (CP450) 4A enzymes, in regulating myogenic activation of skeletal muscle resistance arteries from normotensive Brown Norway (BN) and Sprague-Dawley (SD) rats. Gracilis arteries (GA) were isolated from each animal, viewed via television microscopy, and vessel diameter responses to elevated transmural pressure were measured with a video micrometer under control conditions and following pharmacological inhibition of the CP450 4A enzyme system. Under control conditions, GA from both rat groups exhibited strong, endothelium-independent myogenic activation, which was impaired following treatment with either 17-octadecynoic acid (17-ODYA) or dibromo-dodecenylmethylsulfimide (DDMS), two mechanistically different inhibitors of 20-HETE production. The addition of tetraethylammonium (KCa channel inhibitor) to 17-ODYA-treated GA restored myogenic reactivity to levels comparable to those under control conditions. Treatment of GA from BN and SD rats with 6(Z),15(Z)-20-HEDE, a selective antagonist for 20-HETE receptors, mimicked the effects of 17-ODYA and DDMS treatment on myogenic reactivity. These results suggest that the production of 20-HETE via CP450 4A enzymes contributes to the myogenic activation of skeletal muscle resistance arteries from normotensive BN and SD rats. 20-HETE may act through a receptor-mediated process to block vascular smooth muscle KCa channels in response to the elevated transmural pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.