Abstract

Novel electrocatalytic approaches are urgently needed to increase the energy efficiency and decrease the cost of hydrogen production by PEM water electrolyzers. Recently, we developed a novel catalytic platform, the layered coaxial nanowire electrode (LCANE), which enables PEM water electrolyzers with higher energy efficiency and reduced usage of precious metal catalysts. Electrolyzers based on the LCANE approach use a thin film of IrO2-decorated Pt that is intimately interfaced with an ionomer membrane in the form of vertically-aligned coaxial nanowires. Each nanowire consists of a Pt shell encapsulating an ionomer core, with the Pt shell further decorated by IrO2 clusters. The top region of each nanowire bends to form a layer of in-plane aligned Pt/IrO2 nanowires, providing excellent in-plane electronic conductivity. This unique catalyst/electrode geometry offers several key advantages. By localizing ionomer within the nanowire core, the exterior surface of the catalyst remains free from ionomer, eliminating thin-film transport barriers and preventing catalyst poisoning by ionomer adsorption. The vertically aligned sections of the nanowires provide non-tortuous transport of reactants and products, with abundant pore space for facile access of water and removal of oxygen. Close integration of catalyst and ionomer provides improved proton access and eliminates stranding of catalyst. By incorporating catalyst in the form of a thin film and replacing some of the Ir with Pt, lower Ir loading (as low as 0.1 mg/cm2) is achieved without sacrificing surface area or performance.AcknowledgmentThis work was supported by the ECS-Toyota Young Investigator Fellowship and by the Laboratory Directed Research and Development program at Los Alamos National Laboratory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.