Abstract
Oligonucleotides containing 2'-O-methylated 5-methylisocytidine (3) and 2'-O-propargyl-5-methylisocytidine (4) as well as the non-functionalized 5-methyl-2'-deoxyisocytidine (1b) were synthesized. MALDI-TOF mass spectra of oligonucleotides containing 1b are susceptible to a stepwise depyrimidination. In contrast, oligonucleotides incorporating 2'-O-alkylated nucleosides 3 and 4 are stable. This is supported by acid catalyzed hydrolysis experiments performed on nucleosides in solution. 2'-O-Alkylated nucleoside 3 was synthesized from 2'-O-5-dimethyluridine via tosylation, anhydro nucleoside formation and ring opening. The corresponding 4 was obtained by direct regioselective alkylation of 5-methylisocytidine (1d) with propargyl bromide under phase-transfer conditions. Both compounds were converted to phosphoramidites and employed in solid-phase oligonucleotide synthesis. Hybridization experiments resulted in duplexes with antiparallel or parallel chains. In parallel duplexes, methylation or propargylation of the 2'-hydroxyl group of isocytidine leads to destabilization while in antiparallel DNA this effect is less pronounced. 2'-O-Propargylated 4 was used to cross-link nucleosides and oligonucleotides to homodimers by a stepwise click ligation with a bifunctional azide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.