Abstract

The complexes [M(κ(3)-N,H,H-mapyBH3)(cod)] (M = Rh, Ir; HmapyBH3 = 2-(methylamino)pyridine-borane; cod = 1,5-cyclooctadiene), which contain a novel anionic tripod ligand coordinated to the metal atom through the amido N atom and through two H atoms of the BH3 group, were prepared by treating the corresponding [M2(μ-Cl)2(cod)2] (M = Rh, Ir) precursor with K[mapyBH3]. X-ray diffraction studies and a theoretical Quantum Theory of Atoms in Molecules analysis of their electron density confirmed that the metal atoms of both complexes are in a very distorted trigonal bipyramidal coordination environment, in which two equatorial sites are asymmetrically spanned by the H-B-H fragment. While both 3c-2e BH-M interactions are more κ(1)-H (terminal σ coordination of the B-H bond) than κ(2)-H,B (agostic-type coordination of the B-H bond), one BH-M interaction is more agostic than the other, and this difference is more marked in the iridium complex than in the rhodium one. This asymmetry is not evident in solution, where the cod ligand and the BH3 group of these molecules participate in two concurrent dynamic processes of low activation energies (variable-temperature NMR and density functional theory studies), namely, a rotation of the cod ligand that interchanges its two alkene fragments (through a square pyramidal transition state) and a rotation of the BH3 group about the B-N bond that equilibrates the three B-H bonds (through a square planar transition state). While the cod rotation has similar activation energy in 2 and 3, the barrier to the BH3 group rotation is higher in the iridium complex than in the rhodium one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.