Abstract

A series of (2,7-disubstituted-1,8-biphenylenedioxy)bis(dimethylaluminum) (2) has been readily prepared in situ by treatment of the requisite 2,7-disubstituted-1,8-biphenylenediol (1) with Me3Al (2 equiv) in CH2Cl2 at room temperature; this primarily relies on the successful establishment of a new synthetic procedure of 1 starting from inexpensive m-anisidine. Evaluation of 2 as a bidentate organoaluminum Lewis acid has been performed by the reduction of ketonic substrates using Bu3SnH as a hydride source in comparison to the conventional monodentate Lewis acid dimethylaluminum 2,6-xylenoxide (11), uncovering the significantly high activation ability of 2 toward carbonyl. Particularly, (2,7-dimethyl-1,8-biphenylenedioxy)bis(dimethylaluminum) (2a) exerted the highest reactivity, which has also been emphasized in the Mukaiyama aldol reaction. The structure of the bidentate Lewis acid 2 was unambiguously determined by single-crystal X-ray diffraction analysis of 2g possessing a bulky 3,5-di-tert-butylphenyl substituent, revealing the rigid dimeric assembly in the solid state. The double electrophilic activation of carbonyl substrate by 2a has been supported by low-temperature 13C NMR analysis as well as theoretical study using the Gaussian 98 program. Moreover, unique stereoselectivity has been observed in the 2a-promoted Mukaiyama Michael addition, and highly chemoselective functionalization of carbonyl compounds in the presence of their acetal counterparts has been realized using 2a. Finally, the effectiveness of 2a for the activation of ether functionality has been demonstrated in the Claisen rearrangement of allyl vinyl ethers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.