Abstract

The synthesis of 2-[(2-amino-6-methylpyrimidin-4-yl)sulfanyl]-N-arylacetamides 6a-j was encouraged by their antibacterial activity and drug-likeness predictions. Of the compounds, two bearing 4‑isopropylphenyl 6c and 2,5‑dichlorophenyl 6i moieties were found to be threefold more potent than the first-line tuberculosis drug ethambutol. A molecular docking study revealed that compound 6c may selectively bind to cyclopropane mycolic acid synthase 1, an enzyme essential for the construction of the tuberculosis bacteria cell wall. Keeping this in mind, a recently developed ligand-based virtual screening strategy combining the molecular similarity search and docking approaches was adopted to identify more potent analogs of the parent compound. As a result, a series of new ligands 18p-w with phenyl-substituted azinyl amide groups were in silico discovered. Due to their high binding affinities to the enzyme and improved toxicity profiles, the ligands are undoubtedly worth future synthetic efforts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.