Abstract
n J HH, n J CH and δ 13C values have been measured for a series of X substituted 3-hydroxypyridines (X = 2-NH 2, 2-NO 2, 5-Cl, 6-CH 3, 2-Cl, 2-Br, 2-I). The results show that the additivity of δ 13C provides a valuable criterion to differentiate the phenolic from the zwitterion structure. This conclusion is based on the fact that in the first case, for 2-NH 2-, 2-NO 2-, 5-Cl- and 6-CH 3-3-hydroxypyridines, there is agreement between the experimental and the additivity δ 13C values, while in the three halogen derivatives (2-Cl-, 2-Br- and 2-I-3-hydroxypyridines) the δ exp—add C3 values of −4.95, −7.25 and 9.05 are probably due to the negative charge present on the three position of the zwitterion. Since the additivity of 1 J CH values holds in all substances examined (unlike the case of the 2-pyridone derivatives) it is not possible to use that criterion to differentiate between the phenolic and dipolar structures. The above conclusions are in agreement with IR, p K, NQR, RX, kinetics experiments and quantum chemical calculations of other authors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.