Abstract

AbstractIn this paper, paramagnetic shifts have been measured for all 1H and 13C nuclei of 5‐sulfosalicylic acid (SSA) in the presence of the lanthanide ions in the second half of the series. The ligand forms isostructural complexes with these ions in aqueous solution. The separation of LISs was carried out by the use of the Reilley method and the calculated dipolar shifts were used to simulate the coordination structure of the complex. The result reveals that SSA is coordinated to lanthanide ion via two oxygens, one from the carboxylic group and the other from the phenolic group with Ln–O bond lengths equal to 2.47 Å. The lanthanide ion lies on the benzene plane and the carboxylic group is twisted 20° from the benzene ring. Of all the nuclei examined, those in the six‐membered chelate ring experience significant dipolar interactions and contact interactions. Small |G/A| ratios were obtained for two protons five bonds away from the central lanthanide ion, which shows that the number of bonds alone cannot be used as a criterion for neglecting contact shifts in aromatic ligand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.