Abstract
The high‐power laser facilities NIF and LMJ with the pulse energy as high as 2 MJ are being created in the USA and France. The basic cryogenic indirect‐drive targets for thermonuclear ignition on these facilities are a spherical shell from polystyrene doped with oxygen and bromine. (CH+5%O+0,25%Br), whose inner surface is covered with DT‐ice layer. The central region of targets is filled with DT‐gas. The targets for NIF and LMJ have different external radii (1,11 and 1,215 mm, correspondingly), masses of DT‐fuel (210 и 310 μg), X‐ray radiation temperature dependences in time. The thermonuclear yield from the NIF target calculated with LASNEX code is 15 MJ, the yield from the LMJ target calculated with FCI1 code is 25.4 MJ. In RFNC‐VNIITF calculations of compression and burning of basic NIF and LMJ targets were performed by using of the 1D ERA code in the spectral diffusion approximation for radiation transfer. We used tabulated opacity calculated by the mean ion model. Thermonuclear yield calculated with ERA code is about 18 MJ for the NIF target and nearly 23 MJ for the LMJ target. Calculated yields are in good agreement with published results. Performed calculations justified the possibility to simulate ICF targets in RFNC‐VNIITF. In paper are also presented analysis results of target sensitivity to opacity and X‐ray temperature variations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.