Abstract
Magnetic Particle Imaging (MPI) is an emerging imaging modality that has a potential of complimenting other imaging modalities in clinical practice. Despite many efforts to scale up MPI hardware to date no MPI systems have been demonstrated to accommodate full body imaging. Previously, we introduced hardware and characterized a prototype of a single-sided MPI scanner, where all coils are confined to a single-side of the device, which provides a subject with unrestricted access to the scanning area although with a limited penetration depth. The major difference in our design from the first reported single-sided scanner is in incorporating a field-free line instead of a field-free point, which generally promises higher sensitivity and more robust image reconstruction. However, as inherent to any single-sided configurations the fields in our device are spatially inhomogeneous making it challenging to apply existing imaging techniques. For our specific geometry we implemented spatial encoding scheme and imaging in time-domain making the image reconstruction fast. In this work we present one dimensional imaging of multiple rods phantoms with a single-sided field-free line MPI scanner. The results demonstrate that our scanner is capable of one dimensional imaging of phantoms with a spatial resolution of at least 7 mm without image processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.