Abstract

Recently π-d conjugated coordination polymers have received a lot of attention owing to their unique material properties, although synthesis of long and defect-free polymers remains challenging. Herein we introduce a novel on-surface synthesis of coordination polymers with quinoidal ligands under ultra-high vacuum conditions, which enables formation of flexible coordination polymers with lengths up to hundreds of nanometers. Moreover, this procedure allows the incorporation of different transition-metal atoms with four- or two-fold coordination. Remarkably, the two-fold coordination mode revealed the formation of wires constituted by (electronically) independent 12-membered antiaromatic macrocycles linked together through two C-C single bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.