Abstract

Background13C tracer analysis is increasingly used to monitor cellular metabolism in vivo and in intact cells, but data interpretation is still the key element to unveil the complexity of metabolic activities. The distinct 13C labeling patterns (e.g., M + 1 species in vivo but not in vitro) of metabolites from [U-13C]-glucose or [U-13C]-glutamine tracing in vivo and in vitro have been previously reported by multiple groups. However, the reason for the difference in the M + 1 species between in vivo and in vitro experiments remains poorly understood.MethodsWe have performed [U-13C]-glucose and [U-13C]-glutamine tracing in sarcoma-bearing mice (in vivo) and in cancer cell lines (in vitro). 13C enrichment of metabolites in cultured cells and tissues was determined by LC coupled with high-resolution mass spectrometry (LC-HRMS). All p-values are obtained from the Student’s t-test two-tailed using GraphPad Prism 8 unless otherwise noted.ResultsWe observed distinct enrichment patterns of tricarboxylic acid cycle intermediates in vivo and in vitro. As expected, citrate M + 2 or M + 4 was the dominant mass isotopologue in vitro. However, citrate M + 1 was unexpectedly the dominant isotopologue in mice receiving [U-13C]-glucose or [U-13C]-glutamine infusion, but not in cultured cells. Our results are consistent with a model where the difference in M + 1 species is due to the different sources of CO2 in vivo and in vitro, which was largely overlooked in the past. In addition, a time course study shows the generation of high abundance citrate M + 1 in plasma of mice as early as few minutes after [U-13C]-glucose infusion.ConclusionsAltogether, our results show that recycling of endogenous CO2 is substantial in vivo. The production and recycling of 13CO2 from the decarboxylation of [U-13C]-glucose or [U-13C]-glutamine is negligible in vitro partially due to dilution by the exogenous HCO3−/CO2 source, but in vivo incorporation of endogenous 13CO2 into M + 1 metabolites is substantial and should be considered. These findings provide a new paradigm to understand carbon atom transformations in vivo and should be taken into account when developing mathematical models to better reflect carbon flux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.