Abstract
Wireless biosensors are playing a pivotal role in health monitoring, disease detection and management. The development of wireless biosensor nodes and networks strongly relies on the design of novel low-power, low-cost and flexible CMOS sensor readouts. This paper presents a CMOS potentiostat that integrates a control amplifier, a dual-slope ADC and a wireless unit on the same chip. It implements a novel time-based readout scheme, whereby the counter of the dual-slope ADC is moved to the receiver and the sensor current is encoded in the timing between two wireless pulses transmitted via pulse-harmonic modulation across an inductive link. Measured results show that the potentiostat chip can resolve a minimum input current of 10 pA at a sampling frequency of 125 Hz and a power consumption of 12 uW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.