Abstract

A highly sensitive and selective method has been developed for spectrophotometric determination of boron in plants, the method based on the color reaction of new reagent 1-(2,3,4-trihydroxybenzylideneamino)-8-hydroxynaphthalene-3,6-disulfonic acid (THBA) with boron (III). In an ammonium acetate solution of pH 8.0, boron(III) reacts with THBA to form a 1:2 yellow complex which has a maximum absorption peak at 430 nm. The reaction can complete within 90 min and the absorbance of the complex remains maximum and almost constant at least for 24 h under a temperature range from 0 to 35 °C. The apparent molar absorptivity and Sandell's sensitivity are 2.95 × 10 4 l mol −1 cm −1 and 0.00036 ng cm −2, respectively. The limit of quantification, limit of detection and relative standard deviations were found to be 5.1, 1.5 ng ml −1 and 1.12%, respectively. Under the optimum conditions, the absorbency of the complex ( λ max = 430 nm) increases linearly with concentration up to 0.8 μg ml −1 of boron(III). The influences of foreign ions on the determination of boron were investigated in detail. Most of foreign ions can be tolerated in considerable amounts. Experiments have indicated that THBA as chromogenic reagent for spectrophotometric determination of boron has excellent analytical characteristics. Its sensitivity is more than 4.2-fold that of azomethine-H, and stability is advantage over other derivatives of azomehine-H remarkably. Moreover, the synthesis of THBA and its physicochemical properties of THBA were also investigated in detail. Proposed method has been applied to the determination of boron in plants with satisfactory results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.