Abstract
Inner resonance is a typical nonlinear dynamic behavior, and the symmetric crossply composite sandwich plates have been widely used in aerospace. The studies about inner resonance of such sandwich plates have both theoretical and engineering significances. Based on the dynamic equations for the sandwich-plates, of which the boundary conditions were simply supported on 4 sides, the transverse and inplane excitations were both considered. The average equations in the polar form were obtained with the multiscale method, and the algebraic equations in the steady state form were derived through the average equations. The singularity theory was utilized to investigate 1∶2 resonant bifurcations of the symmetric crossply sandwich plates. Based on the algebraic equations in the steady state form, the restricted tangent space was obtained for the bifurcation equations with 2 tuning parameters, an inplane excitation and a transverse excitation. Then the algebraic equations were simplified under strong equivalence, and the normal form of the algebraic equations were obtained in nondegenerate cases. The singularity theory were generalized for the general nonlinear dynamic equations with 2 state variables and 4 bifurcation parameters, and the 18 universal unfoldings of bifurcation equations with codimension 4 were obtained in the case of 1∶2 internal resonance. The transition sets in the parameter plane and the bifurcation diagrams were depicted. The relationships between the tuning parameters and the exciting parameters were determined when bifurcation, hysteresis, and double limit points happened. The numerical results indicate that the vibration modes in different bifurcation regions are different.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.