Abstract

The use of 12-tungstophosphoric acid (HPW) as the ionomer in high temperature, >100 °C, proton exchange membrane fuel cells (PEMFCs) was investigated. Since HPW is a crystalline solid, the material is more conveniently studied in membranes fabricated from composites of polymers and HPW. A commercially available high-temperature epoxy was chosen as the polymer for our initial studies. The ionomer was added, either by mixing the HPW with the uncured epoxy or by soaking a cured epoxy membrane in an aqueous solution of HPW. Sulfonated and unsulfonated epoxy membranes, with and without HPW, were fabricated. The structure of the composite membranes was characterized using attenuated total reflectance infrared spectroscopy, small angle X-ray scattering, scanning electron microscopy, and thermal gravimetric analysis. Fuel cell polarization curves were obtained for the membranes under varying conditions of temperature and humidification. A trend of increasing current density was noted with increasing temperature for the HPW-doped sulfonated epoxy membrane. All of the membranes exhibited sufficient mechanical strength to 165 °C. Where the sulfonated epoxy, without HPW, failed at temperatures above 165 °C, the sulfonated membranes with HPW functioned in the fuel cell to ⩽200 °C. © 2004 The Electrochemical Society. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.