Abstract

Background There is a continuing need to improve the efficacy of anticancer agents and to reduce the toxicity associated with them. Recently, reversal of the glycolytic phenotype of cancer cells with novel agents such as DCA (dichloroacetate) has been recognised as an important new target for cancer therapy. DCA is currently being assessed as a novel chemotherapeutic in clinical trials. It is anticipated that DCA will be used in combination with other well-established chemotherapeutic drugs. It is therefore critically important to determine the effects of DCA on therapeutic efficacy, and off-target effects of existing frontline anti-cancer drugs. We have recently discovered that DCA induces glutamate cysteine ligase, the rate-limiting step in glutathione (GSH) synthesis, a major cellular antioxidant. We hypothesised that the ability of DCA to stimulate GSH-synthesising capacity could reduce cisplatin-induced nephrotoxicity, which is thought to be mediated in part by oxidative stress. Aims To determine whether DCA can attenuate cisplatin-induced nephrotoxicity, and to determine if DCA influences the anti-cancer properties of cisplatin. Methods 120 Balb/c mice were injected subcutaneously with the syngeneic 4T1 breast cancer cell line and then co-treated with DCA and cisplatin weekly for 1 month. Controls included treatment with cisplatin alone, DCA alone, or normal saline injections. Serum blood urea nitrogen (BUN) and creatinine were measured and kidney damage was assessed histologically. Tumour size was monitored throughout. Results and conclusions DCA prevented increases in serum creatinine, BUN, and renal proximal tubule apoptosis evident in cisplatin-only treated mice. The tumour size in mice in the co-treated group decreased at the same rate as the cisplatin-only treated mice. We have thus concluded that DCA largely prevents the development of cisplatin-induced nephrotoxicity, and does not attenuate its anti-cancer properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.