Abstract

The 11-Gbps 80-km transmission performance of a zero-chirp silicon Mach-Zehnder modulator has been characterized. The zero-chirp characteristic of the silicon modulator is confirmed in the constellation measurement, and gives high tolerance both for positive and negative chromatic dispersion. A low-dispersion-penalty transmission up to 80 km using the 11-Gbps non return-to-zero on-off-keying format is confirmed via bit-error-rate measurements with a performance comparable to that of a commercial lithium-niobate modulator. The dispersion tolerance at 2-dB power penalty for a bit-error-rate of 10(-3) is more than ± 950 ps/nm. Further, 22.3-Gbps binary phase-shift-keying is demonstrated, and the back-to-back power penalty with respect to the lithium-niobate modulator is less than 0.5 dB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.