Abstract

We fabricated a potassium-ion battery by using 11,11,12,12-tetracyano-9,10-anthraquinonedimethane (TCAQ) as the cathode for the first time. Owing to the unique molecular structure and configuration of ionic liquid electrolytes, TCAQ shows a high redox potential of 2.6 V vs. K+/K while delivering a capacity of 88 mAh g−1 at a current density of 17 mA g−1 and a capacity retention of 61% after 50 cycles. The mechanism of the reaction of TCAQ with K was investigated. The results prove that TCAQ holds great promise for broad applications in potassium-ion batteries while revealing new scientific insights into K+-organic cathode batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.