Abstract
The CO2 capture from flue gases by a small fluidized bed reactor was experimentally investigated with limestone. The results showed that CO2 in flue gases could be captured by limestone with high efficiency, but the CO2 capture capacity of limestone decayed with the increasing of carbonation/calcination cycles. From a practical point of view, coal may be required to provide the heat for CaCO3 calcination, resulting in some potential effect on the sorbent capacity of CO2 capture. Experiment results indicated that the variation in the capacity of CO2 capture by using a limestone/coal ash mixture with a cyclic number was qualitatively similar to the variation of the capacity of CO2 capture using limestone only. Cyclic stability of limestone only undergoing the kinetically controlled stage in the carbonation process had negligible difference with that of the limestone undergoing both the kinetically controlled stage and the product layer diffusion controlled stage. Based on the experimental data, a model for the high-velocity fluidized bed carbonator that consists of a dense bed zone and a riser zone was developed. The model predicted that high CO2 capture efficiencies (>80%) were achievable for a range of reasonable operating conditions by the high-velocity fluidized bed carbonator in a continuous carbonation and calcination system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.