Abstract

Sequential data assimilation (DA) was performed on three-dimensional flow fields of a circular jet measured by tomography particle image velocimetry (tomo-PIV). The work focused on an in-depth analysis of the flow enhancement and the pressure determination from volumetric flow measurement data. The jet was issued from a circular nozzle with an inner diameter of D= 20 mm. A split-screen configuration including two high-speed cameras was used to capture the particle images from four different views for a tomography reconstruction of the voxels in the tomo-PIV measurement. Planar PIV was also performed to obtain the benchmark two-dimensional velocity fields for validation. The adjoint-based sequential DA scheme was used with the measurement uncertainty implanted using a threshold function to recover the flow fields with high fidelity and fewer measurement errors. The pressure was determined by either the direct mode, with implementation directly in the DA solver, or by the separate mode, which included solving the Poisson equation on the DA-recovered flow fields. Sequential DA recovered high signal-to-noise flow fields that had piecewise-smooth temporal variations due to the intermittent constraints of the observations, while only the temporal sequence of the fields at the observational instances was selected as the DA output. Errors were significantly reduced, and DA improved the divergence condition of the three-dimensional flow fields. DA also enhanced the dynamical features of the vortical structures, and the pressure determined by both modes successfully captured the downstream convection signatures of the vortex rings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.