Abstract
The linear dendritic polymers of the first and second generations have been investigated by the methods of flow birefringence and equilibrium and nonequilibrium electric birefringence. The side dendrons are attached to the polymer backbone through benzamide groups and contain long terminal hexyloxycarbonyl fragments. Optical, dynamic, dipolar, and conformational characteristics of the macromolecules in question have been analyzed in detail. It has been found that the macromolecules of dendritic polymers with dendrons based on L-aspartic acid possess permanent dipole moments and reorient in external electric and hydrodynamic fields according to the large-scale rotation mechanism. The introduction of rigid benzamide fragments substantially increases the equilibrium rigidity, optical anisotropy, and dipole moment of monomer units of dendritic macromolecules. The role of macro-and microform effects in the formation of optical features of the molecules under study is considered in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.