Abstract

beta1 integrin and collagen matrix interactions regulate the survival of cells by associating with focal adhesion kinase (FAK) and initiating MAPK/ERK signalling, but little is known about these signalling pathways during human fetal islet ontogeny. The purpose of this study was to investigate whether beta1 integrin/FAK activation of the MAPK/ERK pathway regulates human fetal islet cell expression of endocrine cell markers and survival. Isolated human (18-21 weeks fetal age) islet-epithelial cell clusters, cultured on collagen I, were examined using beta1 integrin blocking antibody, beta1 integrin siRNA and FAK expression vector. Perturbing beta1 integrin function in the human fetal islet-epithelial cell clusters resulted in a marked decrease in cell adhesion, in parallel with a reduction in the number of cells expressing PDX-1, insulin and glucagon (p < 0.05). beta1 integrin blockade disorganized focal adhesion contacts in the PDX-1(+) cells and decreased activation of FAK and ERK1/2 signalling in parallel with an increase in expression of cleaved caspases 9 and 3 (p < 0.01). Similar results were obtained following an siRNA knock-down of beta1 integrin expression. In contrast, over-expression of FAK not only increased phospho-ERK and the expression of PDX-1, insulin and glucagon (p < 0.05) but also abrogated the decreases in phospho-ERK and PDX-1 by beta1 integrin blockade. This study demonstrates that activation of the FAK/ERK signalling cascade by beta1 integrin is involved in the differentiation and survival of human fetal pancreatic islet cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.