Abstract

C. Weibel, and Thomason and Trobaugh, proved (under some assumptions) that algebraic K-theory with coefficients is A1-homotopy invariant. We generalize this result from schemes to the broad setting of dg categories. Along the way, we extend the Bass–Quillen fundamental theorem as well as Stienstra’s foundational work on module structures over the big Witt ring to the setting of dg categories. Among other cases, the above A1-homotopy invariance result can now be applied to sheaves of (not necessarily commutative) dg algebras over stacks. As an application, we compute the algebraic K-theory with coefficients of dg cluster categories using solely the kernel and cokernel of the Coxeter matrix. This leads to a complete computation of the algebraic K-theory with coefficients of the du Val singularities parametrized by the simply laced Dynkin diagrams. As a byproduct, we obtain vanishing and divisibility properties of algebraic K-theory (without coefficients).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.