Abstract

BackgroundOne hallmark of Alzheimer disease is microglial activation. Therapeutic approaches for this neurodegenerative disease include the modulation of microglial cells. α1-antitrypsin (A1AT) has been shown to exert anti-inflammatory effects on macrophages and lung epithelial cells and an inhibition of calpain activity in neutrophil granulocytes. Nothing is known about the effect of A1AT on microglial-mediated neuroinflammation. Our aim was to investigate the effect of A1AT on amyloid-β (Aβ)- and LPS-treated microglial cells in vitro with respect to cytokine production, stress pathways, cell viability, phagocytotic abilities and the underlying mechanisms.MethodsPrimary microglial cells were isolated from Swiss Webster mouse embryos on embryonic day 13.5. Cytokines in the supernatants of treated primary microglial cells were analyzed with ELISAs, and accumulated nitrite was detected with Griess reagents. Intracellular stress pathways were investigated in cell lysates using western blotting. Intracellular calcium levels were detected in BV-2 microglial cells loaded with the Ca2+-sensitive (fluorescent) dye Fluo-4. Calpain activity in primary microglial cells was assessed by using a calpain activity assay. Cell viability of Aβ-treated microglial cells was analyzed using MTT assay. Phagocytosis of Aβ was evaluated with western blot analysis.ResultsUpon co-administration, A1AT reduced pro-inflammatory mediators induced by LPS or Aβ. Interestingly, we detected a reduction in calpain activity and in the concentration of intracellular calcium that might mediate the anti-inflammatory effects of A1AT. Inhibition of the classic activation pathways, such as phosphorylation of mitogen-activated protein kinases or activation of protein kinase A were excluded as a mechanism of A1AT-mediated effects. In addition, A1AT increased the viability of Aβ-treated microglial cells and reduced Aβ phagocytosis.ConclusionsWe provide evidence on the mechanism of action of A1AT on microglial-mediated neuroinflammation in vitro. Our in vitro data indicate that A1AT treatment modulates microglial cells in inflammatory conditions and that this modulation is due to an inhibition of calpain activity and intracellular calcium levels. The underlying mechanisms of the effects observed here are promising for future therapeutic strategies and should thus be further pursued in transgenic mouse models of Alzheimer disease.

Highlights

  • One hallmark of Alzheimer disease is microglial activation

  • Since we did not observe a strong regulative effect of anti-inflammatory role for α1-antitrypsin (A1AT) on mitogen-activated protein kinase (MAPK) and the regulation of protein kinase A (PKA) does not seem to be responsible for the anti-inflammatory effect of A1AT, we investigated the change of intracellular calcium levels upon treatment with 0.1 μg/ml LPS and/ or different concentrations of A1AT with the calcium fluorescent marker Fluo-4

  • We assume that both effects are mediated via inhibitory effects on intracellular calcium levels and calpain activation, yet the particular effectors upstream of this inhibition still have to be identified and are subject of further studies

Read more

Summary

Introduction

One hallmark of Alzheimer disease is microglial activation. Therapeutic approaches for this neurodegenerative disease include the modulation of microglial cells. Α1-antitrypsin (A1AT) has been shown to exert anti-inflammatory effects on macrophages and lung epithelial cells and an inhibition of calpain activity in neutrophil granulocytes. Our aim was to investigate the effect of A1AT on amyloid-β (Aβ)- and LPS-treated microglial cells in vitro with respect to cytokine production, stress pathways, cell viability, phagocytotic abilities and the underlying mechanisms. Microglial cells express and secrete pro-inflammatory factors, thereby generating an even more neurotoxic milieu [5]. The concentration of intracellular calcium seems to play a role in the control of pro-inflammatory mediator release [6], and modulation of intracellular calcium levels can reduce the secretion of pro-inflammatory factors [7]. Microglial cells show neuroprotective effects through the uptake and degradation of toxic Aβ oligomers [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.