Abstract

This paper presents 1.6MHz scan rate, non-intrusive, time-resolved temperature measurements of a normal shock reflection from a plane end wall within a shock tube. A vertical-cavity surface-emitting laser (VCSEL) was used to conduct tunable diode laser absorption spectroscopy with water vapor as the probe species. The results are compared with analytical predictions. Temperatures measured with this technique agree within a single-scan standard deviation of ±33 K with calculated temperatures at a VCSEL modulation frequency of 800kHz, which is sufficiently rapid enough to be used to investigate highly transient shock wave interaction processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.