Abstract
It has been claimed by Taylor et al. that the low-redshift end of the K–z relation for radio galaxies is too bright by about half a magnitude owing to contributions from the obscured quasar nuclei. Such a result has major implications for the use of the K-band Hubble diagram in understanding the cosmological evolution of radio galaxies. In this paper we present 1–5-μm imaging data of a nearly complete sample of low-redshift radio galaxies; this approach allows us to determine accurately the strengths of any unresolved nuclear components in the galaxies. We detect nuclear sources in five targets, whose broad-band colours are consistent with reddened quasar spectra. In all the five cases the ratio of the inferred intrinsic near-infrared luminosity to the narrow-line luminosity is typical of quasars. We find a correlation between the inferred nuclear extinction and core-to-lobe ratio, which places constraints on the geometry of the torus. We find evidence for a shift of the K–z relation to fainter magnitudes, but by a much smaller amount (∼0.1 mag) than determined by Taylor et al. Under the assumption that the nuclear sources in radio galaxies have the same intrinsic near-infrared spectra as quasars, our multiwavelength images allow us to limit any possible shift to less than 0.3 mag.
Published Version (
Free)
Join us for a 30 min session where you can share your feedback and ask us any queries you have