Abstract

Globally, rangeland has been undergoing a transition from herbaceous dominated grasslands into tree or shrub dominated woodlands with great uncertainty of associated changes in water budget. Previous modeling studies simulated the impact of woody plant encroachment on hydrological processes using models calibrated and constrained primarily by historic streamflow from intermediate sized watersheds. In this study, we calibrated the Soil and Water Assessment Tool (SWAT model), a widely used model for cropping and grazing systems, for a prolifically encroaching juniper species, eastern redcedar (Juniperus virginiana), in the south-central Great Plains using species-specific biophysical and hydrological parameters and in situ meteorological forcing from three pairs of experimental watersheds (grassland versus eastern redcedar woodland) for a period of 3-years covering a dry-to-wet cycle. The multiple paired watersheds eliminated the potentially confounding edaphic and topographic influences from changes in hydrological processes related to woody encroachment. The SWAT model was optimized with the Shuffled complexes with Principal component analysis (SP-UCI) algorithm developed from the Shuffled Complexes Evolution (SCE_UA). The mean Nash–Sutcliff coefficient (NSCE) values of the calibrated model for daily and monthly runoff from experimental watersheds reached 0.96 and 0.97 for grassland, respectively, and 0.90 and 0.84 for eastern redcedar woodland, respectively. We then validated the calibrated model with a nearby, larger watershed undergoing rapid eastern redcedar encroachment. The NSCE value for monthly streamflow over a period of 22 years was 0.79. We provide detailed biophysical and hydrological parameters for tallgrass prairie under moderate grazing and eastern redcedar, which can be used to calibrate any model for further validation and application by the hydrologic modeling community.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.