Abstract
VaR (value at risk)는 주어진 신뢰수준에서 일정기간 동안 발생할 수 있는 최대손실의 기대치를 나타내는 것으로, 현재 금융기관들의 대표적인 위험관리 수단으로 사용되고 있다. 기존의 대다수 연구에서는 수익률의 확률분포를 정규분포라 모형화한 후 VaR을 측정한다. 최근 Chen 등 (2012)은 수익률의 확률분포를 비대칭 라플라스 분포라 모형화하고 VaR을 측정하였기도 하였으나, 비대칭 라플라스 분포의 경우 그 모양을 결정하는 최빈값, 비대칭 정도, 분산정도 등을 실제적인 환경에서 제한된 개수의 데이터를 가지고 추정하기가 매우 어렵다는 단점이 있다. 이 논문에서, 우리는 (대칭) 라플라스 분포 모형이 정규분포 모형이나 비대칭 라플라스 분포 모형보다 실제적인 환경에서 VaR을 보다 더 정확히 추정해 줌을 주식시장의 실제 데이터와 VaR 초과비율, 기대초과손실, VaR초과편차율 등의 통계지표를 도입하여 입증한다. VaR (value at risk), which represents the expectation of the worst loss that may occur over a period of time within a given level of confidence, is currently used by various financial institutions for the purpose of risk management. In the majority of previous studies, the probability of return has been modeled with normal distribution. Recently Chen et al. (2010) measured VaR with asymmetric Laplacian distribution. However, it is difficult to estimate the mode, the skewness, and the degree of variance that determine the shape of an asymmetric Laplacian distribution with limited data in the real-world market. In this paper, we show that the VaR estimated with (symmetric) Laplacian distribution model provides more accuracy than those with normal distribution model or asymmetric Laplacian distribution model with real world stock market data and with various statistical measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korean Data and Information Science Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.