Abstract

In this part I continue the discussion of the role of computers in the current research on the additive number theory, in particular in the solution of the easier Waring problem. This problem consists in finding for each natural k the smallest such s =v(k) that all natural numbers n can be written as sums of s integer k-th powers n = ± x1k ± ... ± xsk with signs. This problem turned out to be much harder than the original Waring problem. It is intimately related with many other problems of arithmetic and diophantine geometry. In this part I discuss various aspects of this problem, and several further related problems, such as the rational Waring problem, and Waring problems for finite fields, other number rings, and polynomials, with special emphasys on connection with polynomial identities and the role of computers in their solution. As of today, these problems are quite far from being fully solved, and provide extremely broad terrain both for the use in education, and amateur computer assisted exploration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.