Abstract

A unique and novel μ-thin-layer chromatography method based on Sn(II) ion-imprinted polymer (Sn-IIP) for speciation of tin ion species in water and plasma samples is introduced for the first time. For this purpose, N-allylthiourea (NATU) and ethylene glycol dimethacrylate (EGDMA) were copolymerized in the presence of Sn(II). The obtained polymer particles were identified using multiple techniques like BET, FT-IR, XRD, and FESEM. The effects of different variables such as pH of the solution, mobile phase composition, and IIP per CaSO4 mass ratio on the separation efficiency were also evaluated. After completion of the separation process on the plate, its surface was scanned by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Under the established optimal condition, the detection limit, relative standard deviation (RSD) of responses, and linear dynamic range (LDR) of the method were obtained as 0.3μgL-1, 3.5%, and 0.8-900μgL-1 for Sn(II) and 0.4μgL-1, 4%, and 1-740μgL-1 for Sn(IV) assay, respectively. The developed method was finally applied tothe speciation of tin in various water and plasma samples. Graphical abstract Schematic representation of μ-thin-layer chromatography method based on tin(II) ion-imprinted polymer (Sn-IIP) for speciation of tin ion species in water and plasma samples and scanned separated casts by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.