Abstract
Modern small-angle scattering (SAS) experiments with neutrons (SANS) or X-rays (SAXS) combined with contrast variation provide comprehensive information about the structure of large multicomponent macromolecules in solution and allow the size, shape and relative arrangement of each component to be mapped out. To obtain such information, it is essential to perform well designed experiments, in which all necessary steps, from assessing sample suitability to structure modeling, are properly executed. This paper describes α-SAS, an integrative approach that is useful for effectively planning a biological contrast-variation SAS experiment. The accurate generation of expected experimental intensities using α-SAS allows the substantial acceleratation of research into the structure and function of biomacromolecules by minimizing the time and costs associated with performing a SAS experiment. The method is validated using a few basic structures with known analytical expressions for scattering intensity and using experimental SAXS data from Arabidopsis β-amylase 1 protein and SANS data from the histidine kinase-Sda complex and from human dystrophin without and with a membrane-mimicking nanodisk. Simulation of a SANS contrast-variation experiment is performed for synthetic nanobodies that effectively neutralize SARS-CoV-2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Crystallographica Section D Structural Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.