Abstract

Until now, many researches on laser-arc hybrid welding processes have been conducted mainly for high power CW laser and high direct current arc to weld the thick steel plates for shipbuilding. Recently, however the usage of thin steel plates, which tend to be deformed easily by thermal energy, is been increasing because of demand of light structure such as car body in the automobile industry. Accordingly, heat sources having relatively low heat input such as pulsed laser, dip-transfer DC GMA and pulsed GMA seem to be applied more increasingly and the study about those heat sources is needed more intensively. Any heat source mentioned above can not stand alone without weld defects at a relatively high welding speed for increasing the welding productivity. This is main reason to apply the hybrid welding process which uses pulsed laser and low-heat-input GMA heat sources simultaneously to weld the thin steel plate. In this study, parameters of pulsed laser and dip-transfer DC GMA welding are studied firstly through preliminary experiments, and then analyzed in the viewpoint of their physical phenomena. Before conducting the hybrid welding, a pulse control technique is developed based on the parallel port communication and Visual C++ 6.0. Owing to development of this technique, interactions of laser and arc pulses can be controlled consistently. Using the pulse control technique, the hybrid welding is conducted and then its interactive welding phenomenon is analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.